TABLE OF CONTENTS

	Syllabus Ref	Page
TOPIC 1: Basic Arithmetic and Algebra		1
Review of arithmetical operations on rational numbers and quadratic surds.	1.1	1
Inequalities and absolute values	1.2	2
Review of manipulation of and substitution in algebraic expressions, factorisation, and operations on simple algebraic fractions.	1.3	3
Linear equations and inequalities. Quadratic equations. Simultaneous equations.	1.4	5
TOPIC 2: Function \& Coordinate Geometry	2	6
The linear function $y=m x+b$ and its graph.	6.1	8
The straight line: equation of a line passing through a given point with given slope; equation of a line passing through two given points; the general equation $a x+b y+c=0$; parallel lines; perpendicular lines.	6.2	8
Intersection of lines: intersection of two lines and the solution of two linear equations in two unknowns; the equation of a line passing through the point of intersection of two given lines.	6.3	8
Regions determined by lines: linear inequalities.	6.4	8
Distance between two points and the (perpendicular) distance of a point froma line.	6.5	8
The mid-point of an interval.	6.7	8
Coordinate methods in geometry.	6.8	8
TOPIC 3: Trigonometry		10
Review of the trigonometric ratios, using the unit circle. 5	5.1	10
Trigonometric ratios of: $-\theta, 90^{\circ}-\theta, 180^{\circ} \pm \theta, 360^{\circ} \pm \theta$	5.2	10
The exact ratios.	5.3	11
Bearings and angles of elevation.	5.4	12
Sine and cosine rules for a triangle. Area of a triangle, given two sides and the included angle.	5.5	13
TOPIC 4: Series and Applications		14
Arithmetic series. Formulae for the nth term and sum of n terms.	7.1	14
Geometric series. Formulae for the nth term and sum of n terms.	7.2	14
Geometric series with a ratio between -1 and 1 . The limit of x^{n}, as $n \rightarrow \infty$ for $\|x\|<1$, and the concept of limiting sum for a geometric series.	7.3	14
TOPIC 5: The Quadratic Polynomial and the Parabola		15
The quadratic polynomial $a x+b x+c$. Graph of a quadratic function. Roots of a quadratic equation. Quadratic inequalities.	9.1	15
General theory of quadratic equations, relation between roots and coefficients. The discriminant.	9.2	15
Classification of quadratic expressions; identity of two quadratic expressions.	9.3	16
Equations reducible to quadratics.	9.4	16
The parabola defined as a locus. The equation $x=4 A y$. Use of change of origin when vertex is not at $(0,0)$.	9.5	18

www.examsuccess.com.au	Syllabus Ref	Page
TOPIC 6: Differentiation		20
Overview: notation, formula, from $1^{\text {st }}$ principles, special forms, the three differentiation		20
Geometrical Applications of Differentiation		21
Significance of the sign of the derivative.	10.1	21
Stationary points on curves.	10.2	21
The second derivative. The notations $f^{\prime \prime}(x), \frac{d^{2} y}{d x^{2}}, y^{n}$	10.3	21
Geometrical significance of the second derivative.	10.4	21
Problems on maxima and minima.	10.6	22
TOPIC 7: Integration		23
The definite integral.	11.1	23
The relation between the integral and the primitive function.	11.2	23
Approximate methods: trapezoidal rule and Simpson's rule.	11.3	23
Applications of integration: areas and volumes of solids of revolution.	11.4	25
TOPIC 8: The Trigonometric Functions		26
Circular measure of angles. Angle, arc, sector.	13.1	26
The functions $\sin x, \cos x, \tan x, \operatorname{cosec} x, \sec x, \cot x$ and their graphs.	13.2	27
Periodicity and other simple properties of the functions $\sin x, \cos x$ and $\tan x$.	13.3	27
Approximations to $\sin x, \cos x, \tan x$, when x is small. The result $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.	13.4	28
Differentiation of $\cos x, \sin x, \tan x$.	13.5	28
Primitive functions of $\sin x, \cos x, \sec x$.	13.6	28
TOPIC 9: Logarithmic \& Exponential Functions		
The exponential function, and the exponential function with bases other than e	n/a	29
Logarithmic function	n/a	30
TOPIC 10: Applications of Cafculus to the Physical World		
Rates of change as derivatives with respect to time. The notation \dot{x}, \ddot{x}, etc.	14.1	31
Velocity and acceleration as time derivatives. Applications involving: (i) the determination of the velocity and acceleration of a particle given its distance from a point as a function of time; (ii) the determination of the distance of a particle from a given point, given its acceleration or velocity as a function of time together with appropriate initial conditions.	14.3	31
Exponential growth and decay; rate of change of population; the equation $\frac{d N}{d t}=k N$, where k is the population growth constant.	14.2	32

Coordinate Geometry Formula wwn.examsuccess.com.au
The following formulas and properties are likely to be helpful for solving questions in this topic:

1. Distance formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two points on the graph
2. Gradient formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

3. Midpoint formula where the midpoint is $\left(x_{0}, y_{0}\right) 010$

$$
\left(x_{0}=\frac{x_{1}+x_{2}}{2}, \quad y_{0}=\frac{y_{1}+y_{2}}{2}\right.
$$

4. Perpendicular distance from pole to a line Where the ha distance for $\left(x_{1}, y_{1}\right)$ to a line $a x+b y+c=0 \quad$ is Givencoby:
 Absolute value is used since we only require distance.
5. Acute auger between two lines (or tangents)

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

where m_{1} and m_{2} are the gradients of the lines l_{1} and l_{2} respectively.
6. Parallel lines have the property

$$
m_{1}=m_{2}
$$

where m_{1} and m_{2} are the gradients of the lines
7. Perpendicular lines have the property

$$
\begin{aligned}
m_{1} \times m_{2} & =-1 \\
\text { or } \quad m_{1} & =-\frac{1}{m_{2}}
\end{aligned}
$$

TOPIC 3 - TRIGONOMETRY
www.examsuccess.com.au
5.1 Review of the trigonometric ratios, using the unit circle.

Recall that:

$$
\begin{aligned}
\text { sine } & =\frac{\text { opposite }}{\text { hypotenuse }} \mathrm{SOH} \\
\text { cosine } & =\frac{\text { adjacent }}{\text { hypotenuse }} \mathrm{CAH}
\end{aligned}
$$

$$
\text { tangent }=\frac{\text { opposite }}{\text { adjacent }} \text { TOA }
$$

Using the unit circle:

$\sin \theta=\frac{y^{x}}{0}=y^{3}$ (since it is a unit circle, $r=1$)

$$
\cos \theta=\frac{x}{r} \sigma^{3 x}
$$

5.2 Trigonometric ratios of: $-\theta, 90^{\circ}-\theta, 180^{\circ} \pm \theta, 360^{\circ} \pm \theta$ Negative angles

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \cos (-\theta)=\cos \theta \\
& \tan (-\theta)=-\tan \theta
\end{aligned}
$$

Complementary Identities

$$
\begin{aligned}
& \sin \theta=\frac{a}{c}=\cos \left(90^{\circ}-\theta\right) \\
& \cos \theta=\frac{b}{c}=\sin \left(90^{\circ}-\theta\right) \\
& \tan \theta=\frac{a}{b}=\cot \left(90^{\circ}-\theta\right) \\
& \sec \theta=\frac{c}{b}=\operatorname{cosec}\left(90^{\circ}-\theta\right)
\end{aligned}
$$

Formulas with General Angles

$$
\begin{aligned}
& \sin \left(180^{\circ}-\theta\right)=\sin \theta \\
& \cos \left(180^{\circ}-\theta\right)=-\cos \theta \\
& \tan \left(180^{\circ}-\theta\right)=-\tan \theta \\
& \sin \left(180^{\circ}+\theta\right)=-\sin \theta \\
& \cos \left(180^{\circ}+\theta\right)=-\cos \theta \\
& \tan \left(180^{\circ}+\theta\right)=\tan \theta \\
& \sin \left(360^{\circ}-\theta\right)=-\sin \theta \\
& \cos \left(360^{\circ}-\theta\right)=\cos \theta \\
& \tan \left(360^{\circ}-\theta\right)=-\tan \theta \\
& \sin \left(360^{\circ}+\theta\right)=\sin \theta \\
& \cos \left(360^{\circ}+\theta=\cos \theta\right. \\
& \tan \left(360^{\circ} \theta \theta\right)
\end{aligned}
$$

