Exam & State: Year 12 HSC Exam in NSW

Subject: Biology

Type of Exam Preparation Material:Study Notes **Prepared by:**Jeremy C. **Date Document First Created:**1st July 2012

Date Document Updated/Initials:

Past Performance: ATAR: 99.40, Premier's Award For All-Round

Excellence

Disclaimer and Copyright Notice

This document may be of assistance to you in preparing for the exam as mentioned above, however, Exam Success Pty Ltd and its employees do not guarantee that this document is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this document.

Apart from any fair dealing for the purpose of study, research, criticism or review as permitted under the Copyright Act, no part of this document may be reproduced by any process without prior written permission from Exam Success Pty Ltd.

Summary

This document contains information needed for each syllabus dot point for HSC Biology: 9.2 Maintaining a Balance, as published by the Board of Studies (BOS). It includes definitions and concise information which facilitate learning. Where students are required to gather, process and analyse information from secondary resources, brief and concise information is provided in this document as well. However, students are encouraged to deepen their understanding by carrying out further research, which is an essential skill for any students studying science-related subjects.

In general this document may be useful for,

Year 11 -12 HSC Biology students

Useful for

students as a study material and for revision

Notes about the Exam in General

- 1. Section 1 contains Part A (Multiple Choice Questions) and Part B (Short and Long Response Questions) carrying 75%. Sections 1 usually only tests on the 3 Core Modules.
- 2. Section 2 contains questions for the Option that your teacher/you have chosen to study. It carries 25%.

www.examsuccess.com.au Page 1 of 10

3. TRANSPORTATION OF NUTRIENTS AND GASES IN ORGANISMS

Identify the form(s) in which each of the following is carried in mammalian blood:

Substance	Form in which it is carried in mammalian blood		
CO ₂	Bicarbonate ions; carbaminohaemoglobin; and dissolved CO ₂ in plasma		
Oxygen	98% oxyhaemoglobin in red blood cells		
	2% dissolved in plasma		
H ₂ O	91% of plasma is water		
Salts	Transported as ions dissolved in plasma		
Lipids	Glycerol & fatty acids (After digestion)		
	Lipoproteins/Chylomicrons (Absorption and synthesis in intestine lining)		
Nitrogenous	Mostly urea with little amounts of ammonia, uric acid and creatinine dissolved in		
waste	blood plasma		
Other	Glucose, amino acids, Vitamins B and C (water soluble)		
products of	Vitamins A, D, E and K (fat soluble)		
digestion			

Explain the adaptive advantage of haemoglobin (Hb)

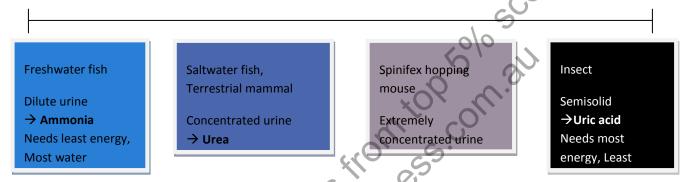
- Single Hb molecule has 4 iron-containing haeme units which can bond with 4 oxygen molecules, beneficially increasing oxygen carrying capacity of blood
- Hb forms loose combination with oxygen
- Capacity of Hb in releasing oxygen increases when CO₂ is present → important in metabolism

Compare the structure of arteries capillaries and veins in relation to their function

	Arteries	Capillaries	Veins
Structure	Thicker, stronger, more	One cell thick walls	Thin muscle layer with outer
	elastice muscles as		fibrous layer
	compared to veins		
Blood	High to force blood to reace	High	Low
pressure	body tissues from heart		
Function	Carry oxygenated blood	Allows exchange of	Carry deoxygenated blood to
(away from the heart to body	nutrients, gases and	the heart from body tissues
. 0	tissues (EXCEPT the	intercellular fluid to	(EXCEPT the pulmonary vein)
	pulmonary artery)	be transported to	
		cells.	

Describe the main changes in the chemical composition of the blood as it moves around the body and identify tissues in which these changes occur

Tissues	Chemical composition of the blood as it moves around the body		
Lung tissue	Blood receives O ₂ and CO ₂ is released		
Body tissues	Blood receives CO ₂ and O ₂ is released		
Small intestine	Digested food substances diffuse into the bloodstream or lymph		
Liver tissues	Glucose converted to glycogen or vice versa, Amino acids broken down (deamination)		
Kidney tissues Excretion of excess H ₂ O, nitrogenous wastes and salts, reabsorption of sal			
	bloodstream		
	Note: More on this in later syllabus dot points		


www.examsuccess.com.au Page 6 of 10

Gather, process and analyse information from secondary sources to compare the process of renal dialysis with the function of the kidney

- Haemodialysis
 - Filters blood but does not carry out other functions of the kidney
 - Removes urea, but not as complex as kidney found in organisms
 - Diffusion of urea and other substances in or out of the blood is entirely passive as compared to some active processes in kidneys

Analyse information from secondary sources to compare and explain the differences in urine concentration of terrestrial mammals, marine fish and freshwater fish.

Use available evidence to explain the relationship between the conservation of water and the production and excretion of concentrated nitrogenous wastes in a range of Australian insects and terrestrial mammals.

Describe adaptations of a range of terrestrial Australian plants that assist in minimising water loss

- 1. Tiny hairs on stems to maintain moisture
- 2. Waxy cuticle to prevent water loss via transpiration
- 3. Thin, tiny leaves to reduce occurrence of transpiration

5. REGULATION OF SALT LEVELS FOR ESTUARINE ORGANISMS

Define enantiostasis as the maintenance of metabolic and physiological functions in response to variations in the environment and discuss its importance to estuarine organisms in maintaining appropriate salt concentrations

- Enantiostasis : Maintenance of metabolic and physiological functions in response to variations in the environment
- Estuary : Region where freshwaters of a river meets the salt water of the sea
- Fluctuations of salinity means organisms need to maintain suitable internal salt concentrations

Process and analyse information from secondary sources and use available evidence to discuss processes used by different plants for salt regulation in saline environments

- Mangrove trees:
 - 1. Special tissues in roots which exclude salt from being absorbed
 - 2. Leaves drop off with excess salt

www.examsuccess.com.au Page 10 of 10